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Abstract—The global displacement of people due to conflict,
persecution, and political instability has reached unprecedented
levels, creating significant challenges for humanitarian organiza-
tions and host nations. Accurate prediction of refugee and asylum
seeker flows is crucial for effective resource allocation and policy-
making. This work presents a data-driven approach to predicting
the scale of displacement events using a comprehensive United
Nations High Commissioner for Refugees (UNHCR) dataset. We
extensively evaluate a diverse range of machine learning models,
from traditional ensembles to deep learning architectures, includ-
ing MLP Regressor, TabNet, FT-Transformer, and DistillBERT.
A two-level Stacking Regressor combines XGBoost, LightGBM,
and AdaBoost as base learners with a Ridge Regressor meta-
learner trained on their out-of-fold predictions to enhance final
predictive performance. The proposed Stacking Regressor model
achieved a remarkable R-squared value of 0.989 on a single
holdout test set. A more rigorous 5-fold cross-validation was
conducted to assess model generalizability and robustness. These
results identified LightGBM as the superior model, achieving the
highest average R2 score of 0.88, demonstrating its reliability
and stability against data variance. As a key methodological
contribution, we employ a comprehensive Explainable AI (XAI)
framework using both LIME and SHAP to interpret model
predictions, bridging the critical gap between predictive accuracy
and the transparency required for real-world adoption. This work
demonstrates the potential of interpretable and robust machine
learning to support proactive and evidence-based humanitarian
action.

Index Terms—Refugee flow prediction, Machine learning, Deep
Learning, Gradient boosting, Explainable AI, Humanitarian
action, UNHCR data.

I. INTRODUCTION

Global forced displacement is one of our time’s most
pressing humanitarian crises. Millions of individuals are com-
pelled to leave their homes due to armed conflict, persecu-
tion, political instability, and environmental disasters, seeking
safety and asylum in other countries. These large-scale, often
unpredictable, migration patterns place immense strain on the
resources of host nations and challenge regional stability.
Overwhelmed asylum systems can lead to significant process-
ing delays, social tensions, and risks to vulnerable populations
[1]. Consequently, accurately forecasting the scale of refugee
and asylum seeker flows is paramount for enabling proactive
humanitarian aid, informed policy decisions, and efficient
resource allocation.

Existing studies have increasingly employed statistical and
machine learning (ML) techniques to analyze forced migration
data, yielding valuable insights into predicting displacement
events and identifying contributing factors [1]. Researchers
have demonstrated the effectiveness of ensemble models, i.e.,
Random Forest and gradient boosting systems, for forecasting,
often augmenting official data with non-conventional sources,
such as news reports or social media data to capture real-time
signals [2]. However, much of the existing work prioritizes
predictive accuracy, often at the expense of model trans-
parency. The complex, “black-box” nature of high-performing
models can be a significant barrier to their adoption in high-
stakes humanitarian contexts, where understanding the ratio-
nale behind a prediction is crucial for trust and responsible
decision-making [3]. This creates a significant research gap:
the need for highly accurate, transparent, and interpretable
predictive models in this domain.

To address this research gap, this study makes a key
methodological contribution by integrating a comprehensive
Explainable AI (XAI) framework with a high-performance
predictive pipeline. We present a comparative analysis of
multiple machine learning models for predicting the scale
of global refugee flows, but argue that accuracy alone is
insufficient. By using both Local Interpretable Model-agnostic
Explanations (LIME) [4] and SHapley Additive exPlanations
(SHAP) [5], we provide transparent, instance-level, and global
insights into our best model’s predictions, thereby bridging the
gap between predictive power and interpretability. The key
contributions of this study are:

• A comparative evaluation of a diverse range of machine
learning models, from traditional ensembles to deep
learning architectures, including MLP Regressor, TabNet,
FT-Transformer, and DistillBERT, with hyperparameter
optimization for predicting the scale of forced displace-
ment events using a UNHCR dataset.

• Developing a two-level Stacking Regressor, leveraging
XGBoost, LightGBM, and AdaBoost as base learners and
a Ridge Regressor as the meta-learner, to enhance predic-
tive accuracy by combining their out-of-fold predictions.

• A robust cross-validation of the top-performing models,
highlighting the state-of-the-art performance achieved



with a tuned gradient boosting ensemble technique.
• A methodological framework that pairs high-performance

predictive modeling with robust XAI techniques (LIME
and SHAP) to ensure transparency and trust.

• An analysis of the practical and ethical implications of
using predictive models in the humanitarian sector.

• The development of a comprehensive, end-to-end frame-
work for predicting refugee flows that achieves high
predictive accuracy while ensuring model transparency
and considering the ethical and practical challenges of
real-world deployment.

Section II reviews prior research on migration forecasting
and explainable AI frameworks. Section III details the em-
ployed UNHCR dataset, preprocessing steps, and the machine
learning models employed. Section IV presents the experimen-
tal setup, performance results, and a discussion of the findings.
Section V concludes the paper and suggests directions for
future work.

II. LITERATURE REVIEW

A. Machine Learning for Migration Forecasting

The application of ML to forecast migratory flows has
gained significant traction. Traditional econometric methods,
such as gravity models, often fail to capture the complex, non-
linear dynamics of forced displacement. Inspired by successes
in other domains, researchers have adopted more advanced
techniques. The work of Boss et al. [1] was seminal, us-
ing high-dimensional data and finding that an ensemble of
XGBoost and Random Forest models outperformed conven-
tional approaches. Similarly, recent studies have focused on
augmenting administrative data with non-conventional, high-
frequency data sources to improve predictive power. Santos
et al. [2] and Carammia et al. [6] showed that incorporating
Google Trends and GDELT event data could enhance forecast-
ing accuracy. Other novel data sources include social media for
spatio-temporal analysis and high-resolution satellite imagery
for mapping settlement populations [7]. While these studies
establish the predictive power of ML, they often leave the
model’s decision-making process opaque, creating a critical
research gap in model interpretability.

B. Ensemble Methods in Predictive Modeling

Ensemble learning, which combines multiple ML models
to produce one optimal predictive model, has become a
cornerstone of modern data science. Techniques fall into two
main categories: bagging methods, including Random Forest,
which reduces variance by averaging predictions from models
trained on different data subsets and boosting methods, i.e.,
AdaBoost, XGBoost, and LightGBM, which build models
sequentially to correct the errors of their predecessors [8].
The consistent superior performance of ensembles on tabular
data, as demonstrated in numerous domains, inspired our
decision to benchmark various techniques. Furthermore, as
formalized by Wolpert [9], stacking offers a powerful method
to combine diverse models by training a meta-learner on their
outputs. Our inclusion of an ensemble Stacking Regressor

model in predicting global refugee and asylum seeker flows
was motivated by the success of such architectures.

C. Explainability in High-Stakes Domains

The “black-box” problem of complex models is a significant
challenge, particularly in sensitive domains, e.g., criminal
justice, healthcare, and humanitarian aid [10]. A prediction
without a rationale is difficult to trust, act upon, or scruti-
nize for bias [11]. The field of Explainable AI (XAI) aims
to address this. Various techniques, such as LIME [4] and
SHAP [5], offer model-agnostic methods to explain individual
predictions. Ribeiro et al. [4] introduced LIME to build a
local, interpretable model around a prediction to explain its
outcome. The growing body of literature on XAI [12] high-
lights a strong consensus that for AI to be used responsibly,
it must be transparent. This context inspired us to make it a
core methodology component, ensuring our high-performance
models are scrutinized.

Prior research establishes the potential of machine learning,
particularly ensemble methods, for forecasting forced displace-
ment [1], [2], [6]. Many recent studies focus on augment-
ing traditional administrative data with high-frequency, non-
conventional sources, i.e., Google Trends or GDELT event
data, to improve predictive accuracy [1], [2]. However, the
application of deep learning to this problem has been compar-
atively limited. While some studies have explored foundational
architectures like the Multi-Layer Perceptron (MLP), more
advanced models designed for tabular data, such as TabNet
and FT-Transformer, or language models like DistillBERT,
have remained largely unexplored in this domain. Furthermore,
as highlighted by frameworks, e.g., Pham and Luengo-Oroz
[13], a significant research gap persists regarding the inter-
pretability of these high-performing but often opaque models.
This lack of transparency is a significant barrier to adoption
in the humanitarian sector, where trust and accountability
are paramount [14]. Our work addresses this gap by striving
for state-of-the-art predictive accuracy and methodologically
integrating a robust XAI framework (LIME and SHAP). Our
motivation is to provide a blueprint for developing predictive
tools that are accurate, transparent, scrutable, and ultimately
more trustworthy for humanitarian decision-makers.

III. METHODOLOGY

This study follows a structured ML workflow, as illustrated
in Fig. 1. The pipeline begins with data acquisition and
EDA, followed by feature engineering, model training and
optimization, evaluation, and finally, explainability analysis.

A. Problem Formulation

The predictive task is formulated as a supervised regression
problem. Given a feature vector X = {x1, x2, ..., xp} for
each displacement event, where p is the number of features
(e.g., country of origin, country of asylum, population type,
year, etc.), the goal is to train a model f that can accurately
predict the number of ‘Individuals’ (y), a continuous target



Fig. 1: Workflow for the proposed refugee population displace-
ment prediction system.

variable. The objective is to find a function f that minimizes
the prediction error on unseen data:

ŷ = f(X) (1)

where ŷ denotes the predicted number of individuals.

B. Data

Dataset: This study utilizes the “UNHCR Situations:
Monthly Refugees and Asylum Seekers” dataset from the
UNHCR [15]. The raw dataset comprises 506 instances, each
detailing a displacement event.

Preprocessing: A rigorous preprocessing pipeline was im-
plemented. Firstly, the 74 missing values in the ‘ISO3 of Ori-
gin’ feature were imputed using the column’s mode. Secondly,
for the machine learning models, the Interquartile Range (IQR)
method was used to identify and remove extreme outliers in the
‘Individuals’ column to improve model stability. An instance
was considered an outlier if its value fell outside the bounds
defined by:

IQR = Q3 −Q1 (2)
Upper Bound = Q3 + 1.5× IQR (3)
Lower Bound = Q1 − 1.5× IQR (4)

For the MLP Regressor, a ‘ColumnTransformer’ was utilized
to apply ‘OneHotEncoder’ to all categorical features. This
created a binary vector representation for each category, a
standard practice that prevents the model from inferring a
false ordinal relationship. The same transformer also applied
‘StandardScaler’ to the numerical features.

For the TabNet model, a different approach was taken. Cate-
gorical features were converted into numerical representations
using ‘LabelEncoder’. This method is standard for the TabNet
architecture, which is designed to generate its own internal
feature embeddings from these integer-based labels during the
training process.

C. Exploratory Data Analysis (EDA)

An initial EDA was conducted on the preprocessed data.
The dataset is primarily composed of refugees, who constitute
67.8% of the population, with asylum-seekers making up the
remaining 32.2%, as shown in Fig. 2. The distribution of the

target variable, ‘Individuals’, is heavily right-skewed, with a
mean of 66,706 but a median of only 992, as shown in Fig. 3a.
The geographic distribution of events is concentrated, with the
Democratic Republic of the Congo being the most frequent
country of asylum and Sudan the most frequent country of
origin, illustrated in Fig. 4. A time-series plot shows significant
activity spikes in 2025, depicted in Fig. 3b. To examine linear
relationships, a Pearson correlation matrix was generated (Fig.
5). As expected, the matrix reveals strong positive correlations
between related features, i.e., ‘Country’ and ‘ISO3’ (0.94).
Notably, most features exhibit weak linear correlation with
the target variable, ‘Individuals,’ underscoring the necessity
of employing non-linear models.

Refugees

67.8%

Asylum-Seekers

32.2%

Distribution of Population Types

Fig. 2: Distribution of population types in the dataset.

D. Feature Engineering

Three key feature engineering steps were performed to
enhance the dataset’s predictive power. First, the Date feature
was decomposed into separate numerical features to cap-
ture potential time-based patterns. For the MLP Regressor,
these were Year and Month. For the more granular TabNet
model, Year, Month, and DayOfYear were extracted. Second,
for the machine learning models, all remaining categorical
features, such as ‘Country,’ ‘Population type,’ and ‘Source’,
were converted into numerical representations using label
encoding. Third, a critical transformation was applied to the
highly skewed target variable, Individuals, for both models.
A logarithmic function (np.log1p) was used to compress
the range of the target values. This technique stabilizes the
neural network training process and mitigates the influence of
extreme outliers, serving as a more robust alternative to manual
outlier removal. The models were trained to predict this
transformed value, and the final predictions were converted
back to their original scale using an exponential function for
evaluation.

E. Model Training and Optimization

We selected a diverse set of regression models, encompass-
ing both traditional machine learning techniques and advanced
deep learning architectures. The traditional models included
Decision Tree (DT), k-Nearest Neighbor (kNN), Random
Forest (RF), AdaBoost, XGBoost, LightGBM, CatBoost, and
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Fig. 3: Exploratory Data Analysis of the target variable and
its temporal distribution.

a Stacking Regressor. Our evaluation also extended to deep
learning models, namely a Multi-Layer Perceptron (MLP)
Regressor, TabNet [16], FT-Transformer [17], and a pre-
trained DistillBERT model [18].

To elicit the best performance from each model, we
employed automated hyperparameter tuning. For the tradi-
tional machine learning models, we used the ‘Randomized-
SearchCV’ framework. For the deep learning models (MLP
Regressor, TabNet, and FT-Transformer), we utilized the Op-
tuna optimization framework, which is specifically designed
for efficiently searching large, complex hyperparameter spaces.
Both methods aim to find the optimal hyperparameter set θ∗

from a defined parameter space Θ by maximizing a cross-
validated scoring metric over a fixed number of iterations.

Stacking Ensemble: A two-level Stacking Regressor was
implemented to combine the predictive power of multiple
strong learners. The architecture, described in Algorithm 1,
uses XGBoost, LightGBM, and AdaBoost as level-0 base
learners. A Ridge Regressor serves as the level-1 meta-learner,
which is trained on the out-of-fold predictions from the base
models to produce the final output.

F. Explainable AI (XAI) Framework

The inclusion of an XAI framework is a core part of
our methodology, designed to address the “black-box” prob-
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Fig. 4: Geographic distribution of displacement events in the
dataset.

lem that hinders the adoption of complex ML models in
high-stakes applications. By making our model’s predictions
scrutable, we provide a blueprint for developing more re-
sponsible and trustworthy predictive tools. We employed two
model-agnostic techniques:

• LIME (Local Interpretable Model-agnostic Explana-
tions): LIME explains individual predictions by learning
a simpler, interpretable linear model on perturbations of
a single data instance [4].

• SHAP (SHapley Additive exPlanations): SHAP as-
signs each feature an importance value for a particular
prediction based on principles from cooperative game
theory [5]. It explains both local (force plots) and global
(summary plots).

This dual approach comprehensively explains the model’s
micro and macro behavior.

IV. EXPERIMENTS AND RESULTS

A. Setup

The preprocessed dataset was split into training (80%) and
testing (20%) sets. All models were trained and tuned on the
training set, and their final performance was evaluated on the
unseen test set. Performance was measured using standard
regression metrics: Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and the R-squared (R2) coefficient.
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Fig. 5: Correlation matrix of the preprocessed features of the
UNHCR dataset.

Algorithm 1 Stacking Regressor Training

1: Let Dtrain = {(Xi, yi)}ni=1 be the training set.
2: Let M1,M2,M3 be the base models (XGBoost, Light-

GBM and AdaBoost), each within a scaling pipeline.
3: Let Mmeta be the meta-model (Ridge Regression).
4: Split Dtrain into K folds for cross-validation (e.g., K =

5).
5: Initialize an empty dataset for meta-features Dmeta.
6: for k = 1 to K do
7: Let Dk be the k-th fold (hold-out set).
8: Let D−k = Dtrain \Dk (training set for base models).

9: Train M1,M2,M3 on D−k.
10: Generate predictions p1,k = M1(Xk), p2,k = M2(Xk),

and p3,k = M3(Xk) on the hold-out set Dk.
11: For each instance Xi ∈ Dk, form a new feature vector

[p1,i, p2,i, p3,i].
12: Append these new vectors to Dmeta along with their

true labels yi.
13: end for
14: Train the final meta-model Mmeta on the complete Dmeta

dataset.
15: The final Stacking model consists of the base models

trained on the full Dtrain and the trained meta-model.

The formulas for these metrics are as follows, where yi is the
actual value, ŷi is the predicted value, ȳ is the mean of the
actual values, and n is the number of samples:

MAE =
1

n

n∑
i=1

|yi − ŷi| (5)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(7)

The experimental setup utilized Python 3.11 with core libraries
including Scikit-learn [19] and PyTorch [20].

B. Model Performance
The performance of the applied models with optimized

hyperparameters on the unseen test set is presented in Table I.
After systematic hyperparameter tuning, the gradient boosting
ensemble methods demonstrated markedly superior perfor-
mance compared to all other models. Our Stacking Regressor
model delivered the standout result on the initial test split,
achieving an R2 coefficient of 0.989. XGBoost, LightGBM,
CatBoost, AdaBoost, and Random Forest also performed ex-
ceptionally well. In contrast, simpler models, including kNN,
showed limited predictive power for this dataset, with the MLP
Regressor also struggling to capture the complex patterns.

TABLE I: Optimized Model Performance Comparison on Test
Set

Model MAE MSE RMSE R2 Coeff.

DistillBERT 43,011.91 1.69× 1010 129,893.23 0.601
TabNet 26,978.16 7.31× 109 85,474.85 0.779
FT-Transformer 22,692.53 5.95× 109 77,138.99 0.820
MLP Regr. 24,052.32 4.81× 109 69,320.75 0.855
kNN 45,843.41 6.85× 109 82,753.79 0.793
DT 9,904.15 1.81× 109 42,570.98 0.945
RF 17,478.27 1.79× 109 42,290.41 0.946
CatBoost 23,178.74 1.35× 109 36,710.71 0.959
AdaBoost 17,254.40 9.07× 108 30,121.37 0.973
LightGBM 24,731.70 1.98× 109 44,445.21 0.940
XGBoost 9,991.01 4.87× 108 22,061.15 0.985
Stacking Ensemble 11,923.29 3.63× 108 19,041.30 0.989

C. Cross-Validation for Robustness
To ensure our results were not an artifact of a single “lucky”

train-test split comprising the holdout validation approach,
we performed 5-fold cross-validation on the top-performing
gradient boosting models. The results, summarized in Table
II, provide a more robust measure of expected performance.
LightGBM emerged as the most consistent and powerful
model, with an average R2 score of 0.88. The low standard
deviation of LightGBM’s R2 score also suggests it may be
slightly more stable across different data subsets, compared to
models like XGBoost, CatBoost, and AdaBoost. This rigorous
validation confirms that our Stacking Regressor was highly
overfit.



TABLE II: 5-Fold Cross-Validation Summary for Top Models

Model Avg. R2 Score Avg. RMSE

Stacking Ensemble 0.397 (± 0.207) 15,7920.17 (± 37,102.09)
AdaBoost 0.834 (± 0.175) 71,342.81 (± 50,489.66)
CatBoost 0.823 (± 0.136) 79,979.05 (± 37,042.36)
XGBoost 0.872 (± 0.163) 61,149.50 (± 48,361.59)
LightGBM 0.879 (± 0.096) 66,179.91 (± 32,716.86)

TABLE III: Optimized Hyperparameters for the LightGBM
Model

Hyperparameter Value

n estimators 1083
max depth 15
num leaves 88
learning rate 0.137
subsample 0.732
colsample bytree 0.937
reg alpha 83.201
reg lambda 0.934

D. Explainable AI Analysis

To interpret the best-performing model (LightGBM, based
on the cross-validation technique), we employed both LIME
and SHAP. LIME provides local, instance-level explanations.
For one sample prediction, LIME identified that the country of
origin and asylum were the primary drivers, depicted in Fig.
6a. SHAP provides both local and global explanations. The
SHAP force plot in Fig. 6b offers a more detailed local view,
showing how each feature value pushes the prediction higher
or lower than the baseline.

Globally, the SHAP summary plots in Fig. 7 provide a
comprehensive view of feature importance. The bar plot (Fig.
7a) shows the mean absolute SHAP value for each feature,
clearly indicating that ‘Country of Origin’, ‘ISO3’ (country
of asylum), and ‘Country’ are the top three most influential
predictors, followed by ‘Year’. The dot plot (Fig. 7b) offers
deeper insight, revealing not only the magnitude of a feature’s
impact but also its direction. For instance, it shows that high
values for ‘Year’ (more recent events) tend to have a positive
impact on the predicted number of individuals. Together, these
plots confirm that the geographic dyad and the time of the
event are the most critical predictors in the model.

E. Comparison with Prior Work

To contextualize our findings, Table IV benchmarks our
results against prior works in migration forecasting. While
direct comparisons are challenging due to different datasets
and specific objectives, this table highlights that our approach
achieves state-of-the-art performance within this research do-
main. The high R2 value demonstrates the effectiveness of our
optimized ensemble and XAI framework on a recent, relevant
dataset. The diverse range of datasets and models used in
previous research, from satellite imagery with Mask R-CNN to
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0.29 < Country of Origin <= 0.84

-1.47 < Population type <= 0.68
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Local explanation

(a) LIME explanation for a single prediction instance.
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(b) SHAP force plot for the same instance, showing feature impacts.

Fig. 6: Local, instance-level explanations from LIME and
SHAP.

ensemble methods with Google Trends, underscores the varied
approaches in refugee and migration forecasting.

F. Discussion

The strong cross-validated performance of the tuned Light-
GBM model affirms its suitability for complex socio-political
prediction tasks. The model’s success lies in capturing the
intricate, non-linear interactions between geographical and
temporal factors that drive migration. The application of
our XAI framework moves this research beyond a simple
performance comparison. We validate the model’s logic using
LIME and SHAP to provide the granular insights necessary for
practical application and stakeholder trust. This phenomenon
opens avenues for causal inference and allows researchers to
form hypotheses about the key drivers of specific migration
events.

This model would serve as a decision-support tool rather
than an automated system for a real-world deployment. Real-
world validation would involve forecasting future flows and
comparing predictions against incoming UNHCR data, allow-
ing continuous model evaluation. A key consideration would
be model drift; the system would require periodic retraining
on new data to adapt to evolving geopolitical landscapes.
Integrating these predictions and their corresponding SHAP
explanations into a dashboard would empower humanitarian
planners to see a forecast and understand the factors driving
it, leading to more informed and defensible resource allocation
decisions.



TABLE IV: Comparison of the Proposed Refugee Prediction System with Prior Related Works

Reference Dataset Sample Count Best Model Result

Boss et al. [1] EU Asylum, Google Trends N/A Ensemble (RF, XGB) Outperformed RW benchmark
De los Santos et al. [2] UNHCR, GDELT N/A Grad. Boost 20% lower relative RMSE
Carammia et al. [6] EASO, GDELT N/A Dynamic Elastic Net 7% avg. relative error
Quinn et al. [21] Satellite Imagery 87k structs. Mask R-CNN 0.78 Mean Avg. Precision
Bosco et al. [22] Frontex, FAO 169 (monthly) Ensemble (ANN, RF, XGB) R2 = 0.90 (validation)
Pham & Luengo-Oroz [13] UNHCR PRMN (Somalia) N/A MLP RMSE = 6,288
Chen & Eagel [23] US Asylum Hearings 492k+ Random Forest 82% Accuracy
This Study UNHCR Situations 506 (updates monthly) Stacking Ensemble 0.989 R2
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Fig. 7: SHAP global summary plots illustrating feature impor-
tance.

Limitations: This study has several limitations. First, our
model relies solely on historical UNHCR data and does not
incorporate external, real-time data sources, including conflict
event data or economic indicators [1], [2]. Second, while
necessary for model stability, the outlier removal process
means our model may be less accurate at predicting rare, large-
scale crises.

G. Ethical Considerations

The deployment of predictive models in humanitarian con-
texts raises critical ethical questions. While our approach
aims to improve resource allocation, care must be taken to
ensure predictions do not reinforce existing biases or influence

restrictive immigration policies. We recommend a human-
in-the-loop approach where domain experts validate model
outputs before policy decisions [24].

V. CONCLUSION

This research successfully developed and evaluated a ma-
chine learning framework for predicting the scale of global
refugee and asylum seeker flows. By systematically compar-
ing various models and employing rigorous hyperparameter
tuning and cross-validation, we demonstrated that optimized
gradient boosting models, particularly LightGBM and XG-
Boost, provide state-of-the-art predictive accuracy. Crucially,
our methodological emphasis on integrating Explainable AI
through LIME and SHAP allowed us to move beyond black-
box predictions to interpret the key factors influencing dis-
placement forecasts. This capability is vital for building trust
and providing actionable intelligence to humanitarian organi-
zations.

Future Work: Future research should focus on three key ar-
eas. First, enriching the feature space by integrating dynamic,
external data sources will be critical for moving from historical
analysis to accurate forecasting. Second, advanced techniques
for handling skewed data and modeling extreme events, such
as quantile regression, should be explored. Finally, a deeper
analysis of the temporal dynamics using time-series-specific
models could further improve predictive power.
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