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Abstract. Road accidents pose a significant global health and economic
challenge. This research conducts a comparative analysis of machine
learning (ML), deep learning (DL), and Transformer-based natural lan-
guage processing (NLP) techniques to predict the specific type of fatal
casualty in British road accidents, aiming to enhance understanding and
prevention efforts. The study utilizes two correlated datasets detailing fa-
tal road accidents and associated casualties in Great Britain from 2006 to
2008, sourced from data.gov.uk. Data preprocessing included exploratory
data analysis, handling missing values, feature engineering, and correla-
tion analysis. For traditional ML models (Logistic Regression, k-Nearest
Neighbors, Decision Tree, Random Forest, XGBoost, CatBoost), class
imbalance was addressed using SMOTE, and models were tuned using
Randomized Search. For DL (TabNet, MLP) and Transformer models
(BERT, RoBERTa, DistilBERT), a standard train/validation/test split
was used without SMOTE, and tabular data was converted into de-
scriptive text sequences for Transformer input. Model performance was
assessed using accuracy, F1-score, the area under the receiver operat-
ing characteristic curve, and confusion matrices on a held-out test set.
Explainability for the best models was explored using LIME. Results in-
dicate that tuned gradient boosting models (Random Forest, XGBoost)
achieved the highest accuracy (approx. 87%). Our research highlights the
capabilities and trade-offs of diverse modeling approaches for identifying
risk factors associated with fatal casualty types, informing targeted road
safety strategies.

Keywords: Road Safety · Fatal Casualties · Machine Learning · Deep
Learning · Transformers · XGBoost · Random Forest · TabNet · MLP ·
BERT · LIME.

1 Introduction

Road accidents represent a critical global public health issue, responsible for a
substantial number of fatalities and severe injuries annually. The World Health
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Organization (WHO) highlighted the severity of this problem, noting the signif-
icant human cost and projecting road traffic accidents (RTAs) as a potentially
leading cause of death in the coming years [32]. Beyond the human tragedy,
RTAs impose a considerable economic burden globally [32]. Understanding the
intricate factors contributing to these incidents, particularly those resulting in
fatalities, is paramount for developing and implementing effective road safety
strategies to mitigate risks and save lives.

Existing studies have increasingly employed statistical and machine learning
(ML) techniques to analyze road accident data, yielding valuable insights into
accident occurrence prediction, injury severity assessment, and identifying con-
tributing factors [1,3,17]. Recent advancements have seen the application of more
sophisticated methods, including deep learning (DL) architectures [24, 30] and
explainable AI (XAI) techniques like LIME and SHAP [12,15,26] to unravel the
complex, non-linear relationships inherent in accident data [15]. Furthermore,
natural language processing (NLP) models, particularly Transformers [29], are
emerging as powerful tools for analyzing textual data related to accidents. How-
ever, their application to structured tabular accident data has been explored
less. While significant work has focused on predicting accident severity [3,8,17],
predicting the specific type of fatal casualty remains a crucial area requiring
further investigation using diverse modeling paradigms.

This study addresses this gap by performing a comparative analysis of tuned
traditional ML models, DL models, and state-of-the-art Transformer models to
predict the type of fatal casualty in British road accidents. Leveraging two com-
prehensive, real-world datasets from the UK government’s open data portal cov-
ering fatal accidents from 2006 to 2008, we evaluate these distinct approaches.
We introduce a method for Transformer models to convert structured tabu-
lar data into descriptive text sequences. Explainability for high-performing ML
models is investigated using Local Interpretable Model-agnostic Explanations
(LIME) [25]. The insights derived aim to assist policymakers and traffic author-
ities create more targeted interventions and preventive measures, potentially
aiding emergency services in prioritizing rescue efforts. The key contributions of
this study include:

– Conducting a rigorous quantitative comparison of tuned traditional ML, DL,
and Transformer models for predicting fatal casualty types based on standard
performance metrics.

– Implementing and evaluating a novel method of converting structured tabu-
lar accident data into serialized text sequences for analysis with Transformer-
based NLP models.

– Applying explainability techniques (LIME) to the best-performing models
to interpret their predictions and identify key contributing factors on an
instance-level, supplementing the quantitative analysis with qualitative in-
sights.
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2 Related Work

2.1 ML Applications in RTA Analysis

RTAs inflict a significant human and economic toll worldwide [32]. Researchers
have increasingly turned to ML as a powerful tool for forecasting and analyz-
ing RTAs [1, 14]. Various studies have explored ML techniques, demonstrating
promising results in predicting RTA occurrences and severity [3, 4, 17, 18]. The
complexity of RTAs, often involving multiple converging factors, makes tradi-
tional linear analysis difficult, whereas ML models excel at capturing intricate,
non-linear relationships [15]. Gradient boosting machines like XGBoost [9], along
with Random Forest (RF) [6], are frequently employed due to their strong per-
formance on tabular data [11,33,34]. While these studies establish the utility of
ML, comparing traditional ML with newer DL and NLP approaches for specific
tasks like fatal casualty type prediction offers further avenues for research.

2.2 DL, NLP, and Explainability in RTA Analysis

Beyond traditional ML, DL models like Multi-Layer Perceptrons (MLPs) [22]
and specialized architectures for tabular data such as TabNet [2] have been
applied to RTA analysis [24, 30]. These models can potentially capture deeper
patterns but often require careful tuning and larger datasets. Concurrently, the
field of XAI has gained prominence, with methods like LIME [25] and SHAP [26]
being used to understand the predictions of complex models, identifying critical
factors influencing accident outcomes [12, 15]. Furthermore, NLP, particularly
with the advent of Transformer models like BERT [10], RoBERTa [19], and
DistilBERT [27], offers the potential for analyzing textual accident reports or,
as explored in this study, converting structured data into text for analysis [29].
While severity prediction remains a common focus [5,8,14], the application and
comparison of tuned ML, DL, NLP (via text conversion), and XAI techniques
specifically for predicting the type of fatal casualty represent a vital research
direction addressed herein.

3 Methodology

This project employs a comparative approach, evaluating traditional supervised
ML algorithms, DL models, and Transformer-based NLP models for the multi-
class classification task of predicting fatal casualty types. The ML models include
tuned versions of Logistic Regression [13], k-Nearest Neighbors [16], Decision
Tree [28], Random Forest [6], XGBoost [9], and CatBoost [23]. The DL models
are TabNet and an MLP. The Transformer models are BERT, RoBERTa, and
DistilBERT. We utilized two datasets of fatal road accidents and casualties in
Great Britain from 2006 to 2008. Data preprocessing involved cleaning, merging,
feature engineering, correlation analysis, and specific handling for different model
types. Model performance is evaluated primarily using accuracy, F1-score, ROC
AUC, and confusion matrices on a held-out test set. LIME is used to explain
predictions of selected ML models.
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3.1 Dataset and Preprocessing

The datasets used are sourced from data.gov.uk: fatalaccidentdata.csv (7981
instances initially) and fatalcasualtydata.csv (8656 instances initially), cov-
ering 2006-2008.
Initial Cleaning and Merging. Rows with missing Fatal_Accident_Index
were dropped from both datasets. The Fatal_Casualty_Age column was con-
verted to a numeric type, and any rows with non-numeric or missing age values
were subsequently dropped. The datasets were merged on Fatal_Accident_Index
using an inner join, resulting in 8637 instances. Finally, any rows with a missing
target variable (Fatal_Casualty_Type) were removed.
Exploratory Data Analysis (EDA). EDA was conducted to understand the
dataset’s underlying characteristics. A significant class imbalance was observed
in the target variable, Fatal_Casualty_Type, as shown in Figure 3a, with ‘Car
Driver’ being the predominant class. This finding directly motivated the use of
the Synthetic Minority Over-sampling Technique (SMOTE) for the traditional
ML models to ensure minority classes were adequately represented during train-
ing. Analysis of numerical features showed that casualty ages were most con-
centrated among young adults and older people. A feature correlation analysis
(Figure 2) revealed only weak linear relationships, suggesting that non-linear
models would be better suited to capture the complex patterns in the data.
Feature Engineering and Selection. Feature engineering was focused on
preparing the data for modeling while retaining interpretability. The categorical
Fatal_Casualty_Sex column was filtered to include only ‘Male’ and ‘Female’
entries, which were then converted into a new binary feature, Fatal_Casualty-
_Sex_Binary. For the ML and DL models, the numerical Month_of_Accident
feature was one-hot encoded to better capture potential seasonal effects without
imposing an ordinal relationship. These models’ final features included accident
time, location, vehicle counts, casualty counts, and specific casualty details like
age and sex.
Data Splitting. ML Models. A 90% training and 10% testing split was used
(Test set size: 864 instances), stratified by the target variable. SMOTE [7] was
applied only to the training set to address the class imbalance identified during
EDA (increasing the training sample size from 7773 to 33501), as illustrated
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Fig. 2. Correlation Matrix of Features.

in Figure 3. Features were then scaled using a ‘StandardScaler’ fitted on the
SMOTE-resampled training data. DL and Transformer Models. The data was
split into training (70%, 6045 instances), validation (15%, 1296 instances), and
test (15%, 1296 instances) sets, stratified by the target variable. This split was
performed before any imputation or scaling to prevent data leakage. Missing
values in features were imputed using the mean of the training set (‘SimpleIm-
puter’), and features were then scaled using a ‘StandardScaler’ fitted only on the
imputed training data. SMOTE was not applied to these models.

Text Conversion for Transformers. For the Transformer models (BERT,
RoBERTa, and DistilBERT), a template-based serialization method was used to
convert each structured data row into a descriptive text sentence. This process
concatenated feature names and their values into a human-readable format. For
example, a row was transformed into a single string such as: "Accident in Month
5, at hour 14, longitude -0.12, latitude 51.50; 2 vehicles involved (0 pedestrians, 0
pedal cycles, 1 motorcycles, 1 cars, 0 buses, 0 vans, 0 HGVs, 0 others); casualties:
1 fatal, 0 serious, 1 slight; casualty age 35, Male." This serialized text became
the direct input for the Transformer models, allowing them to process the tabular
data as a sequence classification task.
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Fig. 3. Training Set Target Class Distribution.

Target Encoding. The categorical target variable Fatal_Casualty_Type (13
classes) was label encoded into a numerical format (0-12) for all models.

3.2 Machine Learning Architectures

Six traditional ML models were tuned using ‘RandomizedSearchCV’ with 5-
fold cross-validation on the SMOTE-resampled, scaled training data. The best
parameters are listed below.
Logistic Regression. ‘C=0.047’, ‘class_weight=‘balanced”, ‘l1_ratio=0.896’,
‘max_iter=1335’, ‘multi_class=‘multinomial”, ‘penalty=None’, ‘solver=‘saga”.
k-Nearest Neighbors. ‘metric=‘minkowski”, ‘n_neighbors=2’, ‘p=1’,
‘weights=‘distance”.
Decision Tree. ‘criterion=‘entropy”, ‘max_depth=50’, ‘max_features=None’,
‘min_samples_leaf=6’, ‘min_samples_split=19’.
Random Forest. ‘max_depth=30’, ‘max_features=‘sqrt”, ‘min_samples_leaf=2’,
‘min_samples_split=2’, ‘n_estimators=293’, ‘class_weight=‘balanced”.
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XGBoost. ‘colsample_bytree=0.90’, ‘gamma=0.35’, ‘learning_rate=0.034’,
‘max_depth=9’, ‘n_estimators=189’, ‘reg_alpha=0.61’, ‘reg_lambda=0.85’,
‘subsample=0.88’.
CatBoost. ‘bootstrap_type=‘Bernoulli”, ‘border_count=128’, ‘depth=9’,
‘iterations=1086’, ‘l2_leaf_reg=3.66’, ‘learning_rate=0.077’,
‘subsample=0.88’.

3.3 Deep Learning Architectures

Two DL models were trained using PyTorch [21] on the scaled train/validation/test
split without SMOTE.
TabNet. An attentive transformer network for tabular data [2]. Used param-
eters: ‘n_d=16’, ‘n_a=16’, ‘n_steps=4’, ‘gamma=1.3’, optimizer=‘AdamW’,
‘lr=2e-2’, scheduler=‘ReduceLROnPlateau’, ‘mask_type=‘sparsemax”. Trained
with early stopping.
Multi-Layer Perceptron. A feedforward neural network with two hidden lay-
ers (128 and 64 neurons), ReLU activations, BatchNorm, and Dropout (rate=0.3).
Trained using AdamW optimizer (‘lr=1e-3’) and ‘CrossEntropyLoss’, with
early stopping based on validation loss.

3.4 Transformer Architectures

Three pre-trained Transformer models from Hugging Face [31] were fine-tuned
for sequence classification on the serialized text data: BERT [10], RoBERTa [19],
and DistilBERT [27]. Models were fine-tuned for three epochs using the ‘Trainer’
API, with evaluation on the validation set guiding model selection.

3.5 Explainable AI

LIME was used to explain individual predictions of the tuned XGBoost and
Random Forest models. LIME perturbs the input features of a single instance and
fits a local, interpretable model to approximate the complex model’s behavior,
highlighting the most influential features for that prediction.

4 Experiment and Results

4.1 Evaluation Metrics

The primary metrics used to evaluate and compare the models on the test set
are:
Accuracy. The proportion of correctly classified instances.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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Table 1. Test Set Performance Comparison of All Models.
Model Family Model Name Accuracy F1-score Precision Recall ROC AUC

Machine Learning (with SMOTE)

Random Forest 0.8704 0.8651 0.8651 0.8704 0.995
XGBoost 0.8704 0.8653 0.8653 0.8704 0.995
CatBoost 0.8553 0.8510 0.8510 0.8553 N/Aa

Decision Tree 0.8426 0.8430 0.8451 0.8426 N/Aa

Logistic Regression 0.8009 0.8151 0.8551 0.8009 N/Aa

k-Nearest Neighbors 0.7778 0.7710 0.7695 0.7778 N/Aa

Deep Learning (no SMOTE) MLP 0.8673 0.8646 0.8636 0.8673 N/Aa

TabNet 0.8071 0.7889 0.7878 0.8071 N/Aa

Transformers (no SMOTE)
BERT (bert-base-uncased) 0.8495 0.8452 0.8469 0.8495 N/Aa

DistilBERT (distilbert-base-uncased) 0.8441 0.8366 0.8350 0.8441 N/Aa

RoBERTa (roberta-base) 0.8279 0.8094 0.7945 0.8279 N/Aa

aROC AUC was computed only for the top-performing models (RF and XGBoost) for a focused
comparison of their class discrimination capabilities.

F1-score. The harmonic mean of precision and recall, weighted by the number
of true instances for each class (support).

F1-score =
∑
l∈L

wl ×
2× (Precisionl × Recalll)

Precisionl + Recalll
(2)

where L is the set of labels, and wl is the proportion of instances belonging to
label l.
ROC AUC (Micro-Average). Evaluates the model’s ability to distinguish
between classes across all thresholds.
Confusion Matrix. A table visualizing classification performance, showing
counts of true and false predictions for each class.

4.2 Results and Analysis

This section presents the comparative performance of the tuned ML, DL, and
Transformer models on their respective held-out test sets.

Table 1 summarizes the final test set performance. Key observations include:
ML Models. The tuned Random Forest and XGBoost models demonstrated the
best performance among all models, achieving identical high accuracy (87.04%)
and F1-scores (≈0.87) on their test set (N=864). Their strong performance is
corroborated by excellent micro-averaged ROC AUC scores of 0.995 (Figure 7).
DL and Transformer Models. The MLP model performed competitively
(86.7% accuracy) on its test set (N=1296) without SMOTE. Fine-tuned Trans-
former models also achieved good results, with BERT leading this group (85.0%
accuracy).
Confusion Matrix Analysis. Detailed confusion matrices for RF (Figure 5)
and XGBoost (Figure 6) show high accuracy for major classes like ‘Car Driver’
and ‘Pedestrian’. However, they also revealed confusion between ‘Car Driver’
and ‘Car Passenger’, and they struggled with rare classes like ‘HGV Passenger’.
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Imbalance Handling (SMOTE). The application of SMOTE for ML models
like Random Forest and XGBoost proved crucial, allowing them to learn better
representations of minority classes and contributing significantly to their strong
test set performance.
Explainability (LIME). LIME analysis for RF (Figure 8a) and XGBoost (Fig-
ure 8b) highlighted the local importance of features for specific predictions. For
instance, for a prediction of ‘Car Driver’, both models identified low counts for
other vehicle types (e.g., Pedal_Cycles, Motor_Cycles) as key supporting fac-
tors. This reinforces the need for XAI tools when deploying complex predictive
models in safety-critical domains [15,25].

Overall, the results suggest that well-tuned gradient boosting models (RF,
XGBoost) trained with appropriate imbalance handling excel at this task. DL
models like MLP and Transformers processing serialized text also achieve com-
petitive performance.

4.3 Discussion

The experimental results demonstrate the effectiveness of various modeling ap-
proaches for predicting fatal road casualty types. Tuned ensemble ML models,
particularly Random Forest and XGBoost, showed top performance, aligning
with findings in similar RTA studies. Their ability to handle complex, non-linear
interactions in the data was evident. A standard MLP also achieved strong re-
sults, suggesting neural networks can effectively model the data’s inherent distri-
bution. The successful application of Transformer models, using text converted
from structured data, highlights a viable alternative approach, leveraging NLP



10 U. Hasan and M. Abdul Qayum

Fig. 5. Confusion Matrix for Random Forest.

capabilities for this classification task. While overall performance was high for
the best models, challenges remain in accurately predicting rare casualty types.

Limitations. This study has several limitations: Data Temporality and Scope.
The 2006-2008 dataset from Great Britain may not fully reflect current con-
ditions or be directly generalizable elsewhere [20, 35]. Feature Availability. The
dataset might lack granular details (e.g., driver behavior, precise weather) that
could improve accuracy. Model Interpretability. While LIME provided local ex-
planations for ML models, interpreting DL and Transformer models remains
challenging. Data Handling Discrepancies. Differences in test set sizes and ap-
plying SMOTE only to ML models affect direct comparisons across model fami-
lies regarding imbalance handling. These limitations highlight avenues for future
research.
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Fig. 6. Confusion Matrix for XGBoost.

5 Conclusion

This research successfully compared the performance of tuned traditional ML,
DL, and Transformer-based NLP models to predict fatal road accident casualty
types in Great Britain. By leveraging real-world accident data from 2006-2008
and employing techniques like SMOTE for ML model training, text conversion
for Transformers, correlation analysis, ROC AUC evaluation, confusion matrix
inspection, and LIME for explainability, we gained comprehensive insights into
the capabilities of different approaches.

Our findings indicate that well-tuned ensemble ML models, specifically Ran-
dom Forest and XGBoost trained with SMOTE, achieved the highest predictive
accuracy (approx. 87%) and excellent ROC AUC scores (0.995) on their test set.
A standard MLP also demonstrated strong, competitive performance (approx.
87% accuracy) on its respective test set without explicit oversampling. Trans-
former models (particularly BERT) processing textual representations of the
data achieved respectable results (85% accuracy). Confusion matrices provided
detailed insights into class-specific performance, highlighting common confusion
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Fig. 7. Micro-Average ROC Curve for RF and XGBoost.

patterns, while LIME analysis offered local interpretability for ML models, illus-
trating feature contributions for individual predictions. The study underscores
the potential of applying advanced NLP techniques to structured data problems
via text conversion. It confirms the effectiveness of robust ML ensembles for
this type of tabular prediction task. The insights gained can aid authorities in
developing more targeted road safety interventions by better understanding the
factors associated with different fatal casualty types.

Future Work. Future research could extend this work in several directions:
Utilizing More Recent Data. Applying the models to current datasets to assess
performance considering temporal changes [35]. Advanced Models and Ensem-
bles. Exploring more sophisticated DL architectures, larger Transformers, or en-
semble methods combining predictions from different model families. Consistent
Data Handling. Re-evaluating models using identical data splits and consistently
applying imbalance handling techniques for fairer comparison. Deeper Explain-
ability. Applying more advanced XAI techniques (e.g., SHAP) across all model
types for global and local insights [26]. Addressing these areas can further re-
fine our understanding of fatal RTAs and contribute to developing increasingly
effective global road safety strategies.
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(a) Random Forest LIME explanation for instance 0 (Predicted: Car Driver).

(b) XGBoost LIME explanation for instance 0 (Predicted: Car Driver).

Fig. 8. LIME Explanations for Test Instance 0 from RF and XGBoost Models.
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